3D and Circuit Integration of MEMS

 
 
Wiley-VCH (Verlag)
  • erschienen am 21. April 2021
 
  • Buch
  • |
  • Hardcover
  • |
  • XI, 506 Seiten
978-3-527-34647-9 (ISBN)
 
Dieses Referenzwerk ist eine umfassende und systematische Einführung in die Technologien für das Packaging und die heterogene Integration von Mikrosystemen. Der Schwerpunkt liegt auf MEMS aus Silikon, die in großem Umfang zum Einsatz kommen, und auf Technologien zur Systemintegration. Die Themenbereiche umfassen u. a. Bulk-Mikromechanik, Oberflächen-Mikromechanik, CMOS-MEMS, Wafer-Verbindungen, Waferbonden und Wafer-Sealing.
1. Auflage
  • Englisch
  • Weinheim
  • |
  • Deutschland
  • Für Beruf und Forschung
  • 36 farbige Abbildungen, 28 s/w Tabellen, 36 s/w Abbildungen
  • |
  • 36 schwarz-weiße und 36 farbige Abbildungen, 28 schwarz-weiße Tabellen
  • Höhe: 252 mm
  • |
  • Breite: 179 mm
  • |
  • Dicke: 30 mm
  • 1130 gr
978-3-527-34647-9 (9783527346479)
weitere Ausgaben werden ermittelt
Masayoshi Esashi is Professor in the Micro System Integration Center at Tohoku University, Japan. He obtained his PhD from Tohoku University and has been working there as a researcher and teacher. His research interests include MEMS, integrated sensors and MEMS packaging. He has published more than 500 scientific papers and has received numerous awards including the IEEE Andrew S. Grove Award in 2015 and IEEE Jun-ichi Nishizawa medal in 2016.
PART I INTRODUCTION 1 OVERVIEW PART II SYSTEM ON CHIP 2. BULK MICROMACHINING 2.1 Process Basis of Bulk Micromachining Technologies 2.2 Bulk micromachining based on wafer bonding 2.3 Single wafer single side processes 3. ENHANCED BULK MICROMACHINING BASED ON MIS PROCESS 3.1 Repeating MIS cycle for multi-layer 3D structure or multi-sensor integration 3.2 Pressure sensor fabrication - - from MIS updated to TUB 3.3 Extension of MIS process for various advanced MEMS devices 4. EPITAXIAL POLY SI SURFACE MICROMACHINING 4.1 Process condition of epi-poly Si 4.2 MEMS devices using epi-poly Si 5. POLY SIGE SURFACE MICROMACHINING 5.1 Introduction 5.2 SiGe deposition 5.3 LP CVD polycrystalline SiGe 5.4 CMEMS¿ process 5.5 Poly-SiGe applications 6. METAL SURFACE MICROMACHINING 6.1 Background of Surface Micromachining 6.2 Static device 6.3 Static structure fixed after the single movement 6.4 Dynamic device 6.5 Summary 7. HETEROGENEOUSLY INTEGRATED ALUMINUM NITRIDE MEMS RESONATORS AND FILTERS 7.1 Overview of integrated aluminum nitride MEMS 7.2. Heterogeneous integration of aluminum nitride MEMS resonators with CMOS circuits 7.3 Heterogeneously integrated self-healing filters 8. MEMS USING CMOS WAFER 8.1 Introduction : CMOS MEMS architectures and advantages 8.2 Process modules for CMOS MEMS 8.3 The 2P4M CMOS platform (0.35µm) 8.4 The 1P6M CMOS platform (0.18µm) 8.5 CMOS MEMS with add-on materials 8.6 Monolithic integration of circuits and sensors 8.7 Issues and Concerns 8.8 Concluding remarks 9. WAFER TRANSFER 9.1 Introduction 9.2 Film transfer 9.3 Device transfer (Via-last) 9.4 Device transfer (via-first) 9.5 Chip level transfer 10. PIEZOELECTRIC MEMS 10.1 Introduction 10.2 PZT thin film deposition 10.3 PZT-MEMS fabrication process PART III BONDING, SEALING AND INTERCONNECTION 11. ANODIC BONDING 11.1 Principle 11.2 Distortion 11.3 Influence of anodic bonding to circuits 11.4 Anodic bonding with various materials, structures and conditions 12. DIRECT BONDING 12.1 Wafer direct bonding 12.2 Hydrophilic wafer bonding 12.3 Surface activated bonding at room temperature 13. METAL BONDING 13.1 Solid liquid inter-diffusion bonding (SLID) 13.2 Metal Thermocompression bonding 13.3 Eutectic bonding 14. REACTIVE BONDING 14.1 Motivation 14.2 Fundamentals of reactive bonding 14.3 Material systems 14.4 State of the art 14.5 Deposition concepts of reactive material systems 14.6 Bonding with RMS 14.7 Conclusion 15. POLYMER BONDING 15.1 Introduction 15.2 Materials for polymer wafer bonding 15.3 Polymer wafer bonding technology 15.4 Precise wafer-to-wafer alignment in polymer wafer bonding 15.5 Practical examples of polymer wafer bonding processes 15.6 Summary and Conclusions 16. SOLDERING BY LOCAL HEATING 16.1 Soldering in MEMS packaging 16.2 Laser soldering 16.3 Resistive heating and soldering 16.4 Inductive heating and soldering 16.5 Other localized soldering processes 17. PACKAGING, SEALING AND INTERCONNECTION 17.1 Wafer level packaging 17.2 Sealing 17.3 Interconnection 18. VACUUM PACKAGING 18.1 Problems of vacuum packaging 18.2 Vacuum packaging by anodic bonding 18.3 Packaging by anodic bonding with controlled cavity pressure 18.4 Vacuum packaging by metal bonding 18.5 Vacuum packaging by deposition 18.6 Hermeticity testing 19. BURIED CHANNELS IN MONOLITHIC SI 19.1 Buried channel/cavity in LSI and MEMS 19.2 Monolithic SON technology and related technologies 19.3 Applications of SON 20. THROUGH-SUBSTRATE-VIAS 20.1 Configuration of TSVs 20.2 TSV applications in MEMS 20.3 Considerations for TSV in MEMS 20.4 Fundamental TSV fabrication technologies 20.5 Polysilicon TSVs 20.6 Silicon TSVs 20.7 Metal TSVs
Dewey Decimal Classfication (DDC)

Sofort lieferbar

159,00 €
inkl. 7% MwSt.
in den Warenkorb