Algebras and Representation Theory

 
 
Springer (Verlag)
  • erschienen im Oktober 2018
 
  • Buch
  • |
  • Softcover
  • |
  • IX, 298 Seiten
978-3-319-91997-3 (ISBN)
 
This carefully written textbook provides an accessible introduction to the representation theory of algebras, including representations of quivers.
The book starts with basic topics on algebras and modules, covering fundamental results such as the Jordan-Hölder theorem on composition series, the Artin-Wedderburn theorem on the structure of semisimple algebras and the Krull-Schmidt theorem on indecomposable modules. The authors then go on to study representations of quivers in detail, leading to a complete proof of Gabriel's celebrated theorem characterizing the representation type of quivers in terms of Dynkin diagrams.
Requiring only introductory courses on linear algebra and groups, rings and fields, this textbook is aimed at undergraduate students. With numerous examples illustrating abstract concepts, and including more than 200 exercises (with solutions to about a third of them), the book provides an example-driven introduction suitable for self-study and use alongside lecture courses.
Book
1st ed. 2018
  • Englisch
  • Cham
  • |
  • Schweiz
Springer International Publishing
  • Für höhere Schule und Studium
  • 59 s/w Abbildungen
  • |
  • 2 schwarz-weiße Abbildungen, Bibliographie
  • Höhe: 231 mm
  • |
  • Breite: 154 mm
  • |
  • Dicke: 22 mm
  • 497 gr
978-3-319-91997-3 (9783319919973)
10.1007/978-3-319-91998-0
weitere Ausgaben werden ermittelt

Karin Erdmann's research focus lies on representation theory of finite groups, and finite-dimensional algebras. She has written many research articles, and is the author of a research monograph and a textbook.

Thorsten Holm is Professor of Mathematics at Leibniz Universität Hannover. His research interests include representation theory of finite groups and finite-dimensional algebras, and algebraic combinatorics.

1 Introduction.- 2 Algebras.- 3 Modules and Representations.- 4 Simple Modules in the Jordan-Hölder Theorem.- 5 Semisimple Modules and Semisimple Algebras.- 6 The Structure of Semisimple ALgebras - The Artin-Wedderburn Theorem.- 7 Semisimple Group Algebras and Maschke's Theorem.- 8 Indecomposable Modules.- 9 Representation Type.- 10 Representations of Quivers.- 11 Diagrams and Roots.- 12 Gabriel's Theorem.- 13 Proofs and Background.- 14 Appendix A: Induced Modules for Group Algebras.- 15 Appendix B: Solutions to Selected Exercises.- Index.
This carefully written textbook provides an accessible introduction to the representation theory of algebras, including representations of quivers.

The book starts with basic topics on algebras and modules, covering fundamental results such as the Jordan-Hölder theorem on composition series, the Artin-Wedderburn theorem on the structure of semisimple algebras and the Krull-Schmidt theorem on indecomposable modules. The authors then go on to study representations of quivers in detail, leading to a complete proof of Gabriel's celebrated theorem characterizing the representation type of quivers in terms of Dynkin diagrams.

Requiring only introductory courses on linear algebra and groups, rings and fields, this textbook is aimed at undergraduate students. With numerous examples illustrating abstract concepts, and including more than 200 exercises (with solutions to about a third of them), the book provides an example-driven introduction suitable for self-study and use alongside lecture courses.

Versand in 7-9 Tagen

24,60 €
inkl. 7% MwSt.
Sonderpreis bis 30.06.2020
Aktion Yellow Sale | statt 37,44 €
in den Warenkorb