Structures for Algorithms and Applications
Springer (Verlag)
  • erschienen am 23. August 2016
  • Buch
  • |
  • Softcover
  • |
  • XIII, 535 Seiten
978-3-662-50241-9 (ISBN)
Triangulations presents the first comprehensive treatment of the theory of secondary polytopes and related topics. The text discusses the geometric structure behind the algorithms and shows new emerging applications, including hundreds of illustrations, examples, and exercises.
Previously published in hardcover
Softcover reprint of the original 1st ed. 2010
  • Englisch
  • Heidelberg
  • |
  • Deutschland
Springer Berlin
  • Für Beruf und Forschung
  • 50 s/w Tabellen
  • |
  • 50 Tables, black and white; XIII, 535 p.
  • Höhe: 26 cm
  • |
  • Breite: 19.3 cm
  • 1405 gr
978-3-662-50241-9 (9783662502419)
weitere Ausgaben werden ermittelt
J.A. De Loera is a professor of mathematics at the University of California, Davis. His work approaches difficult computational problems in discrete mathematics and optimization using tools from algebra and convex geometry. His research has been recognized by an Alexander von Humboldt Fellowship and several national and international grants. He is an associate editor of the journal "Discrete Optimization". Jörg Rambau is the chair professor of Wirtschaftsmathematik (Business Mathematics) at the Universität of Bayreuth since 2004. Before that he was associate head of the optimization department at the Zuse Institute Berlin (ZIB). His research encompasses problems in applied optimization, algorithmic discrete mathematics and combinatorial geometry. He is the creator of the state of the art program for triangulation computations TOPCOM. He is associate editor of the "Jahresberichte der Deutschen Mathematiker-Vereinigung". Francisco Santos, a professor at the Universidad de Cantabria Spain, received the Young Researcher award from the Universidad Complutense de Madrid in 2003 and was an invited speaker in the Combinatorics Section of the International Congress of Mathematicians in 2006. He is well-known for his explicit constructions of polytopes with disconnected spaces of triangulations, some of which are featured in this book. He is an editor of Springer Verlag's journal "Discrete and Computational Geometry".
Triangulations in Mathematics.- Configurations, Triangulations, Subdivisions, and Flips.- Life in Two Dimensions.- A Tool Box.- Regular Triangulations and Secondary Polytopes.- Some Interesting Configurations.- Some Interesting Triangulations.- Algorithmic Issues.- Further Topics.
From the reviews:

"Focusing on the structure of the set of all possible triangulations ... the current study sits at the threshold of geometry and combinatorics ... . offering terra firma to students still struggling with abstraction, the central theorem ... only dates to 1989, so the present elaboration carries readers to the frontiers of research. ... It is unusual to find such a leisurely, generous exposition of a new subject, as replete with illustrations as contemporary calculus textbooks. ... Summing Up: Recommended. Upper-division undergraduates through professionals." (D. V. Feldman, Choice, Vol. 49 (1), September, 2011)

"This book masterfully presents the theory of triangulations of (the convex hull of) a point set alongside many appealing applications in algebra, computer science, combinatorics, and optimization. ... The writing is thorough and engaging, assisted by clear (and numerous) illustrations, and many exercises for the reader. Graduate students and researchers in any area in which triangulations of points set configurations play a role will find this book a comprehensive and most useful reference." (Matthias Beck, Zentralblatt MATH, Vol. 1207, 2011)
Triangulations appear everywhere, from volume computations and meshing
to algebra and topology. This book studies the subdivisions and
triangulations of polyhedral regions and point sets and presents the
first comprehensive treatment of the theory of secondary polytopes and
related topics.
A central theme of the book is the use of the rich structure of the
space of triangulations to solve computational problems (e.g., counting
the number of triangulations or finding optimal triangulations with
respect to various criteria), and to establish connections to
applications in algebra, computer science, combinatorics, and
With many examples and exercises, and with nearly five hundred
illustrations, the book gently guides readers through the properties
of the spaces of triangulations of "structured" (e.g., cubes, cyclic
polytopes, lattice polytopes) and "pathological" (e.g., disconnected
spaces of triangulations) situations using only elementary principles.
DNB DDC Sachgruppen

Versand in 7-9 Tagen

35,30 €
inkl. 7% MwSt.
Sonderpreis bis 30.06.2020
Aktion Yellow Sale | statt 69,5 €
in den Warenkorb