Structurally Unstable Quadratic Vector Fields of Codimension One

 
 
Birkhäuser (Verlag)
  • erschienen am 6. Juli 2018
 
  • Buch
  • |
  • Softcover
  • |
  • VI, 267 Seiten
978-3-319-92116-7 (ISBN)
 
Originating from research in the qualitative theory of ordinary differential equations, this book follows the authors' work on structurally stable planar quadratic polynomial differential systems. In the present work the authors aim at finding all possible phase portraits in the Poincaré disc, modulo limit cycles, of planar quadratic polynomial differential systems manifesting the simplest level of structural instability. They prove that there are at most 211 and at least 204 of them.
Book
1st ed. 2018
  • Englisch
  • Cham
  • |
  • Schweiz
Springer International Publishing
  • Für Beruf und Forschung
  • 1 farbige Abbildung, 361 s/w Abbildungen
  • |
  • Bibliographie
  • Höhe: 233 mm
  • |
  • Breite: 151 mm
  • |
  • Dicke: 22 mm
  • 441 gr
978-3-319-92116-7 (9783319921167)
10.1007/978-3-319-92117-4
weitere Ausgaben werden ermittelt
Introduction.- Preliminary definitions.- Some preliminary tools.- A summary for the structurally stable quadratic vector fields.- Proof of Theorem 1.1(a).- Proof of Theorem 1.1(b).- Bibliography.
Originating from research in the qualitative theory of ordinary differential equations, this book follows the authors' work on structurally stable planar quadratic polynomial differential systems. In the present work the authors aim at finding all possible phase portraits in the Poincaré disc, modulo limit cycles, of planar quadratic polynomial differential systems manifesting the simplest level of structural instability. They prove that there are at most 211 and at least 204 of them.

Versand in 7-9 Tagen

48,14 €
inkl. 7% MwSt.
Sonderpreis bis 30.06.2020
Aktion Yellow Sale | statt 74,89 €
in den Warenkorb