Elliptic Boundary Value Problems with Fractional Regularity Data

The First Order Approach
 
 
American Mathematical Society (Verlag)
  • erschienen am 30. Mai 2018
 
  • Buch
  • |
  • Hardcover
  • |
  • 152 Seiten
978-1-4704-4250-7 (ISBN)
 
In this monograph the authors study the well-posedness of boundary value problems of Dirichlet and Neumann type for elliptic systems on the upper half-space with coefficients independent of the transversal variable and with boundary data in fractional Hardy-Sobolev and Besov spaces. The authors use the so-called ``first order approach'' which uses minimal assumptions on the coefficients and thus allows for complex coefficients and for systems of equations.

This self-contained exposition of the first order approach offers new results with detailed proofs in a clear and accessible way and will become a valuable reference for graduate students and researchers working in partial differential equations and harmonic analysis.
weitere Ausgaben werden ermittelt
Alex Amenta, Delft University of Technology, The Netherlands.

Pascal Auscher, Universite Paris-Sud, Orsay, France.
Introduction
Function space preliminaries
Operator theoretic preliminaries
Adapted Besov-Hardy-Sobolev spaces
Spaces adapted to perturbed Dirac operators
Classification of solutions to Cauchy-Riemann systems and elliptic equations
Applications to boundary value problems
Bibliography
Index.

Versand in 10-20 Tagen

136,48 €
inkl. 7% MwSt.
in den Warenkorb

Abholung vor Ort? Sehr gerne!
Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok