Elliptic Boundary Value Problems with Fractional Regularity Data

The First Order Approach
 
 
American Mathematical Society (Verlag)
  • erschienen am 30. Mai 2018
 
  • Buch
  • |
  • Hardcover
  • |
  • 152 Seiten
978-1-4704-4250-7 (ISBN)
 
In this monograph the authors study the well-posedness of boundary value problems of Dirichlet and Neumann type for elliptic systems on the upper half-space with coefficients independent of the transversal variable and with boundary data in fractional Hardy-Sobolev and Besov spaces. The authors use the so-called ``first order approach'' which uses minimal assumptions on the coefficients and thus allows for complex coefficients and for systems of equations.

This self-contained exposition of the first order approach offers new results with detailed proofs in a clear and accessible way and will become a valuable reference for graduate students and researchers working in partial differential equations and harmonic analysis.
  • Englisch
  • Providence
  • |
  • USA
  • Für Beruf und Forschung
  • Höhe: 254 mm
  • |
  • Breite: 178 mm
978-1-4704-4250-7 (9781470442507)
1470442507 (1470442507)

weitere Ausgaben werden ermittelt
Alex Amenta, Delft University of Technology, The Netherlands.

Pascal Auscher, Universite Paris-Sud, Orsay, France.
Introduction
Function space preliminaries
Operator theoretic preliminaries
Adapted Besov-Hardy-Sobolev spaces
Spaces adapted to perturbed Dirac operators
Classification of solutions to Cauchy-Riemann systems and elliptic equations
Applications to boundary value problems
Bibliography
Index.

Versand in 10-20 Tagen

134,53 €
inkl. 7% MwSt.
in den Warenkorb

Abholung vor Ort? Sehr gerne!
Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok